Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Adv ; 9(49): eadj4884, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064566

RESUMEN

Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.


Asunto(s)
Hiperoxia , Oxígeno , Animales , Ratones , Encéfalo/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo
2.
Nat Neurosci ; 26(12): 2104-2121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957317

RESUMEN

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mutación/genética , Enfermedades Neuroinflamatorias , Tauopatías/genética
3.
Cell Rep ; 42(10): 113252, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37863057

RESUMEN

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína HMGB1 , Tauopatías , Animales , Ratones , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Gliosis , Ratones Transgénicos , Tauopatías/tratamiento farmacológico
4.
Nat Aging ; 3(3): 275-296, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118426

RESUMEN

Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model. The selective genetic removal of APOE4 from neurons led to a significant reduction in tau pathology, gliosis, neurodegeneration, neuronal hyperexcitability and myelin deficits. Single-nucleus RNA-sequencing revealed that the removal of neuronal APOE4 greatly diminished neurodegenerative disease-associated subpopulations of neurons, oligodendrocytes, astrocytes and microglia whose accumulation correlated to the severity of tau pathology, neurodegeneration and myelin deficits. Thus, neuronal APOE4 plays a central role in promoting the development of major AD pathologies and its removal can mitigate the progressive cellular and tissue alterations occurring in this model of APOE4-driven tauopathy.


Asunto(s)
Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Apolipoproteína E4/genética , Enfermedades Neurodegenerativas/genética , Vaina de Mielina/metabolismo , Gliosis/genética , Tauopatías/genética , Neuronas/metabolismo
5.
PLoS Genet ; 18(5): e1010147, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511767

RESUMEN

Phenotypic differences across sexes are pervasive, but the genetic architecture of sex differences within and across phenotypes is mostly unknown. In this study, we aimed to improve detection power for sex-differentially contributing SNPs previously demonstrated to be enriched in disease association, and we investigate their functions in health, pathophysiology, and genetic function. We leveraged GIANT and UK Biobank summary statistics and defined a set of 2,320 independent SNPs having sexually dimorphic effects within and across biometric traits (MAF > 0.001, P < 5x10-8). Biometric trait sex-heterogeneous SNPs (sex-het SNPs) showed enrichment in association signals for 20 out of 33 diseases/traits at 5% alpha compared to sex-homogeneous matched SNPs (empP < 0.001), and were significantly overrepresented in muscle, skeletal and stem cell development processes, and in calcium channel and microtubule complexes (FDR < 0.05, empP < 0.05). Interestingly, we found that sex-het SNPs significantly map to predicted expression quantitative trait loci (Pr-eQTLs) across brain and other tissues, methylation quantitative trait loci (meQTLs) during development, and transcription start sites, compared to sex-homogeneous SNPs. Finally, we verified that the sex-het disease/trait enrichment was not explained by Pr-eQTL enrichment alone, as sex-het Pr-eQTLs were more enriched than matched sex-homogeneous Pr-eQTLs. We conclude that genetic polymorphisms with sexually dimorphic effects on biometric traits not only contribute to fundamental embryogenic processes, but later in life play an outsized role in disease risk. These sex-het SNPs disproportionately influence gene expression and have a greater influence on disorders of body and brain than other expression-regulatory variation. Together, our data emphasize the genetic underpinnings of sexual dimorphism and its role in human health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Femenino , Expresión Génica , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
6.
Mol Autism ; 12(1): 24, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736683

RESUMEN

BACKGROUND: The Early Markers for Autism (EMA) study is a population-based case-control study designed to learn more about early biologic processes involved in ASD. METHODS: Participants were drawn from Southern California births from 2000 to 2003 with archived prenatal and neonatal screening specimens. Across two phases, children with ASD (n = 629) and intellectual disability without ASD (ID, n = 230) were ascertained from the California Department of Developmental Services (DDS), with diagnoses confirmed according to DSM-IV-TR criteria based on expert clinical review of abstracted records. General population controls (GP, n = 599) were randomly sampled from birth certificate files and matched to ASD cases by sex, birth month and year after excluding individuals with DDS records. EMA has published over 20 papers examining immune markers, endogenous hormones, environmental chemicals, and genetic factors in association with ASD and ID. This review summarizes the results across these studies, as well as the EMA study design and future directions. RESULTS: EMA enabled several key contributions to the literature, including the examination of biomarker levels in biospecimens prospectively collected during critical windows of neurodevelopment. Key findings from EMA include demonstration of elevated cytokine and chemokine levels in maternal mid-pregnancy serum samples in association with ASD, as well as aberrations in other immune marker levels; suggestions of increased odds of ASD with prenatal exposure to certain endocrine disrupting chemicals, though not in mixture analyses; and demonstration of maternal and fetal genetic influence on prenatal chemical, and maternal and neonatal immune marker and vitamin D levels. We also observed an overall lack of association with ASD and measured maternal and neonatal vitamin D, mercury, and brain-derived neurotrophic factor (BDNF) levels. LIMITATIONS: Covariate and outcome data were limited to information in Vital Statistics and DDS records. As a study based in Southern California, generalizability for certain environmental exposures may be reduced. CONCLUSIONS: Results across EMA studies support the importance of the prenatal and neonatal periods in ASD etiology, and provide evidence for the role of the maternal immune response during pregnancy. Future directions for EMA, and the field of ASD in general, include interrogation of mechanistic pathways and examination of combined effects of exposures.


Asunto(s)
Trastorno Autístico/epidemiología , Adulto , Trastorno Autístico/sangre , Trastorno Autístico/inmunología , Biomarcadores/sangre , California/epidemiología , Estudios de Casos y Controles , Niño , Citocinas/inmunología , Disruptores Endocrinos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Femenino , Humanos , Masculino , Embarazo/inmunología , Hormonas Tiroideas/sangre , Vitamina D/sangre , Adulto Joven
7.
Biol Psychiatry ; 89(12): 1127-1137, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33648717

RESUMEN

BACKGROUND: The origin of sex differences in prevalence and presentation of neuropsychiatric and behavioral traits is largely unknown. Given established genetic contributions and correlations, we tested for a sex-differentiated genetic architecture within and between traits. METHODS: Using European ancestry genome-wide association summary statistics for 20 neuropsychiatric and behavioral traits, we tested for sex differences in single nucleotide polymorphism (SNP)-based heritability and genetic correlation (rg < 1). For each trait, we computed per-SNP z scores from sex-stratified regression coefficients and identified genes with sex-differentiated effects using a gene-based approach. We calculated correlation coefficients between z scores to test for shared sex-differentiated effects. Finally, we tested for sex differences in across-trait genetic correlations. RESULTS: We observed no consistent sex differences in SNP-based heritability. Between-sex, within-trait genetic correlations were high, although <1 for educational attainment and risk-taking behavior. We identified 4 genes with significant sex-differentiated effects across 3 traits. Several trait pairs shared sex-differentiated effects. The top genes with sex-differentiated effects were enriched for multiple gene sets, including neuron- and synapse-related sets. Most between-trait genetic correlation estimates were not significantly different between sexes, with exceptions (educational attainment and risk-taking behavior). CONCLUSIONS: Sex differences in the common autosomal genetic architecture of neuropsychiatric and behavioral phenotypes are small and polygenic and unlikely to fully account for observed sex-differentiated attributes. Larger sample sizes are needed to identify sex-differentiated effects for most traits. For well-powered studies, we identified genes with sex-differentiated effects that were enriched for neuron-related and other biological functions. This work motivates further investigation of genetic and environmental influences on sex differences.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Femenino , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Caracteres Sexuales
8.
Genetics ; 214(4): 1091-1102, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047095

RESUMEN

Vitamin D is essential for several physiological functions and biological processes. Increasing levels of maternal vitamin D are required throughout pregnancy as a unique source of vitamin D for the fetus, and consequently maternal vitamin D deficiency may result in several adverse outcomes in newborns. However, the genetic regulation of vitamin D in pregnancy and at birth is not yet well understood. We performed genome-wide association studies of maternal midgestational serum-derived and neonatal blood-spot-derived total 25-hydroxyvitamin D from a case-control study of autism spectrum disorder (ASD). We identified one fetal locus (rs4588) significantly associated with neonatal vitamin D levels in the GC gene, encoding the binding protein for the transport and function of vitamin D. We also found suggestive cross-associated loci for neonatal and maternal vitamin D near immune genes, such as CXCL6-IL8 and ACKR1 We found no interactions with ASD. However, when including a set of cases with intellectual disability but not ASD (N = 179), we observed a suggestive interaction between decreased levels of neonatal vitamin D and a specific maternal genotype near the PKN2 gene. Our results suggest that genetic variation influences total vitamin D levels during pregnancy and at birth via proteins in the vitamin D pathway, but also potentially via distinct mechanisms involving loci with known roles in immune function that might be involved in vitamin D pathophysiology in pregnancy.


Asunto(s)
Trastorno del Espectro Autista/genética , Sangre Fetal/metabolismo , Polimorfismo de Nucleótido Simple , Vitamina D/genética , Adulto , Quimiocina CXCL6/genética , Sistema del Grupo Sanguíneo Duffy/genética , Femenino , Humanos , Recién Nacido , Interleucina-8/genética , Embarazo , Proteína Quinasa C/genética , Receptores de Superficie Celular/genética , Vitamina D/sangre , Proteína de Unión a Vitamina D/genética
9.
Nat Genet ; 51(8): 1252-1262, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367015

RESUMEN

Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform an integrative analysis of chromatin interactions, open chromatin regions and transcriptomes using promoter capture Hi-C, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing, respectively, in four functionally distinct neural cell types: induced pluripotent stem cell (iPSC)-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus-like neurons and primary astrocytes. We identify hundreds of thousands of long-range cis-interactions between promoters and distal promoter-interacting regions, enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several promoter-interacting regions by using clustered regularly interspaced short palindromic repeats (CRISPR) techniques in human excitatory neurons, demonstrating that CDK5RAP3, STRAP and DRD2 are transcriptionally regulated by physically linked enhancers.


Asunto(s)
Linaje de la Célula/genética , Cromatina/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Marcadores Genéticos , Trastornos Mentales/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , Mapeo Cromosómico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Masculino , Neuronas/citología , Polimorfismo de Nucleótido Simple
11.
Nat Commun ; 9(1): 4455, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367059

RESUMEN

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.


Asunto(s)
2-Aminoadipato-Transaminasa/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Hormonas Tiroideas/genética , Tirotropina/metabolismo , 2-Aminoadipato-Transaminasa/genética , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Estudio de Asociación del Genoma Completo , Humanos , Hipertiroidismo/genética , Hipertiroidismo/fisiopatología , Hipotiroidismo/genética , Hipotiroidismo/fisiopatología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/genética , Glándula Tiroides/metabolismo , Glándula Tiroides/fisiopatología , Hormonas Tiroideas/metabolismo , Población Blanca
12.
Genome Med ; 10(1): 67, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134952

RESUMEN

BACKGROUND: The immune system plays a fundamental role in development during pregnancy and early life. Alterations in circulating maternal and neonatal immune mediators have been associated with pregnancy complications as well as susceptibility to autoimmune and neurodevelopmental conditions in later life. Evidence suggests that the immune system in adults not only responds to environmental stimulation but is also under strong genetic control. METHODS: This is the first genetic study of > 700 mother-infant pairs to analyse the circulating levels of 22 maternal mid-gestational serum-derived and 42 neonatal bloodspot-derived immune mediators (cytokines/chemokines) in the context of maternal and fetal genotype. We first estimated the maternal and fetal genome-wide SNP-based heritability (h2g) for each immune molecule and then performed genome-wide association studies (GWAS) to identify specific loci contributing to individual immune mediators. Finally, we assessed the relationship between genetic immune determinants and ASD outcome. RESULTS: We show maternal and neonatal cytokines/chemokines displaying genetic regulation using independent methodologies. We demonstrate that novel fetal loci for immune function independently affect the physiological levels of maternal immune mediators and vice versa. The cross-associated loci are in distinct genomic regions compared with individual-specific immune mediator loci. Finally, we observed an interaction between increased IL-8 levels at birth, autism spectrum disorder (ASD) status, and a specific maternal genotype. CONCLUSIONS: Our results suggest that maternal and fetal genetic variation influences the immune system during pregnancy and at birth via distinct mechanisms and that a better understanding of immune factor determinants in early development may shed light on risk factors for developmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Citocinas/genética , Sangre Fetal/inmunología , Polimorfismo de Nucleótido Simple , Adulto , Trastorno del Espectro Autista/inmunología , Citocinas/sangre , Femenino , Humanos , Lactante , Masculino , Embarazo
13.
J Am Soc Nephrol ; 29(1): 335-348, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093028

RESUMEN

Magnesium (Mg2+) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg2+, which is crucial for Mg2+ homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg2+ homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10-13) near TRPM6, which encodes an epithelial Mg2+ channel, and rs35929 (P=2.1×10-11), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg2+ regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg2+ wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg2+ deficiency to insulin resistance and obesity.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Homeostasis/genética , Riñón/metabolismo , Magnesio/sangre , Magnesio/orina , Canales Catiónicos TRPM/genética , Adiposidad/genética , Animales , Proteínas de Unión al GTP/genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Insulina/sangre , Resistencia a la Insulina/genética , Magnesio/administración & dosificación , Ratones , Obesidad/genética , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Environ Health Perspect ; 125(8): 087023, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28895873

RESUMEN

BACKGROUND: Prior studies suggest neurodevelopmental impacts of polybrominated diphenyl ethers (PBDEs), but few have examined diagnosed developmental disorders. OBJECTIVES: Our aim was to determine whether prenatal exposure to brominated flame retardants (BFRs) is associated with autism spectrum disorder (ASD) or intellectual disability without autism (ID). METHODS: We conducted a population-based case-control study including children with ASD (n=545) and ID (n=181) identified from the California Department of Developmental Services and general population (GP) controls (n=418) from state birth certificates. ASD cases were matched to controls by sex, birth month, and birth year. Concentrations of 10 BFRs were measured in maternal second trimester serum samples stored from routine screening. Logistic regression was used to calculate crude and adjusted odds ratios (AOR) for associations with ASD, and separately for ID, compared with GP controls, by quartiles of analyte concentrations in primary analyses. RESULTS: Geometric mean concentrations of five of the six congeners with ≥55% of samples above the limit of detection were lower in mothers of children with ASD or ID than in controls. In adjusted analyses, inverse associations with several congeners were found for ASD relative to GP (e.g., quartile 4 vs. 1, BDE-153: AOR=0.56, 95% CI: 0.38, 0.84). When stratified by child sex (including 99 females with ASD, 77 with ID, and 73 with GP), estimates were consistent with overall analyses in boys, but in the opposite direction among girls, particularly for BDE-28 and -47 (AOR=2.58, 95% CI: 0.86, 7.79 and AOR=2.64, 95% CI: 0.97, 7.19, respectively). Similar patterns overall and by sex were observed for ID. CONCLUSIONS: Contrary to expectation, higher PBDE concentrations were associated with decreased odds of ASD and ID, though not in girls. These findings require confirmation but suggest potential sexual dimorphism in associations with prenatal exposure to BFRs. https://doi.org/10.1289/EHP1079.


Asunto(s)
Trastorno del Espectro Autista/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/sangre , Retardadores de Llama/metabolismo , Discapacidad Intelectual/epidemiología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Adulto , Trastorno del Espectro Autista/sangre , California/epidemiología , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Embarazo
15.
Front Surg ; 4: 40, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791295

RESUMEN

OBJECTIVE: To analyze the ovarian reserve via measurement of follicular density and anti-Müllerian hormone (AMH) in endometriosis patients participating to a clinical program of cortical ovarian cryopreservation. DESIGN: Retrospective analysis of serum AMH levels and prospective investigation of ovarian follicle number. SETTING: University Hospital. PATIENTS: Two hundred and two women with endometriosis and 400 controls. INTERVENTIONS: Blood samples and ovarian biopsies. MAIN OUTCOME MEASURES: Correlation of serum AMH levels and the number of non-growing follicles in the biopsied cortical tissues in endometriosis and control subjects, including age, type of AMH kit, and the laboratory performing the analysis as covariates. RESULTS: AMH levels were shown to decrease with age in untreated endometriosis patients (P < 1.0 × 10-5) but they were significantly lower in endometriosis compared to controls only in patients over 36 years old (P = 2.7 × 10-4). The AMH decrease was faster in endometriosis compared to controls (beta = 0.27, P = 4.0 × 10-4). Primordial follicle number decreased with the reduction of AMH levels in both cases and controls (beta = 0.3; P = 0.04). CONCLUSION: AMH is a reliable marker of ovarian reserve in endometriosis patients, and it can predict follicular density in women undergoing ovarian tissue cryopreservation.

16.
Hypertension ; 70(3): e4-e19, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28739976

RESUMEN

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

18.
Am J Hum Genet ; 100(6): 865-884, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552196

RESUMEN

Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.


Asunto(s)
Antropometría , Genoma Humano , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN/métodos , Estatura/genética , Estudios de Cohortes , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Variación Genética , Humanos , Lipodistrofia/genética , Masculino , Metaanálisis como Asunto , Obesidad/genética , Mapeo Físico de Cromosoma , Caracteres Sexuales , Síndrome , Reino Unido
19.
G3 (Bethesda) ; 7(4): 1287-1299, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28235828

RESUMEN

Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but negative associations with offspring ASD outcome. We report the first large-scale maternal and fetal genetic study of the midpregnancy serum levels of a set of 21 organohalogens in a subset of 790 genotyped women and 764 children collected in California by the Early Markers for Autism (EMA) Project. Levels of PCB (polychlorinated biphenyl) and PBDE (polybrominated diphenyl ether) congeners showed high maternal and fetal estimated SNP-based heritability (h2g ) accounting for 39-99% of the total variance. Genome-wide association analyses identified significant maternal loci for p,p'-DDE (P = 7.8 × 10-11) in the CYP2B6 gene and for BDE-28 (P = 3.2 × 10-8) near the SH3GL2 gene, both involved in xenobiotic and lipid metabolism. Fetal genetic loci contributed to the levels of BDE-100 (P = 4.6 × 10-8) and PCB187 (P = 2.8 × 10-8), near the potential metabolic genes LOXHD1 and PTPRD, previously implicated in neurodevelopment. Negative associations were observed for BDE-100, BDE153, and the sum of PBDEs with ASD, partly explained by genome-wide additive genetic effects that predicted PBDE levels. Our results support genetic control of midgestational biomarkers for environmental exposures by nonoverlapping maternal and fetal genetic determinants, suggesting that future studies of environmental risk factors should take genetic variation into consideration. The independent influence of fetal genetics supports previous hypotheses that fetal genotypes expressed in placenta can influence maternal physiology and the transplacental transfer of organohalogens.


Asunto(s)
Contaminantes Ambientales/sangre , Feto/metabolismo , Exposición Materna , Trastorno del Espectro Autista/sangre , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Patrón de Herencia/genética , Modelos Lineales , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Embarazo
20.
PLoS Genet ; 13(1): e1006516, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28076348

RESUMEN

Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.


Asunto(s)
Trastorno del Espectro Autista/genética , Epistasis Genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas ras/genética , Línea Celular , Femenino , Genes Modificadores , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Células-Madre Neurales/metabolismo , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...